Abstract:
Commercial acoustic software is generally hard to simulate sound radiation of complex acoustic sources, which are of arbitrary shape or time-varying. In order to solve this problem, the Helmholtz equation (without acoustic source term) is solved in time domain via Finite Volume Method with embedding acoustic sources to Finite-volume nodes, and the relationship between velocity potential and the pressure/displacement of acoustic source is acquired. This method makes it more convenient and efficient to deal with the acoustic source in numerical calculation. In addition, it allows simulating initial value problem and time-varying source problem. The sound radiation of common acoustic sources and the second order cylindrical acoustic source has been simulated, and the results agree well with analytic solutions and results of commercial code, with numerical errors smaller than 15%. This code has good encapsulation and versatility, via which different types of acoustic sources can be combined to form an arbitrary complex acoustic source and the propagation characteristics can be obtained. It is a good platform of carrying out research on linear acoustics like sound radiation of complex acoustic sources.