高级检索

利用字典学习的浅海被动声层析

Shallow water passive acoustic tomography using dictionary learning

  • 摘要: 针对被动海洋声层析,提出了一种利用字典学习从海洋环境噪声反演浅海声速剖面的方法。首先,通过海洋噪声互相关函数提取出两个水平阵列间的经验格林函数;其次,通过字典学习从数据生成字典矩阵来稀疏表征声速剖面;最后通过搜索稀疏的系数来实现对浅海声速剖面的反演。通过南海实验数据对本方法进行了验证,相对于传统被动海洋声层析方法实际反演结果的均方根误差降低为0.53 m·s-1。而且搜索参数更少,同时具有较高的准确性。

     

    Abstract: A dictionary learning-based method for sound speed profile (SSP) inversion in shallow water is presented. The empirical Green's functions between two parallel horizontal arrays can be extracted from noise cross-correlation functions. The sound speed profiles are sparsely characterized by data-generated dictionary matrix, and they can be inverted by searching for sparse coefficients. This method is validated by experimental data in the South China Sea. Compared with the traditional empirical orthogonal function (EOF) methods, the inversion accuracy accuracy is reduced to 0.53 m·s-1, moreover this method has fewer search parameters and higher accuracy.

     

/

返回文章
返回