高级检索

桩孔形态点云数据的三维增强可视化

3D Enhanced Visualization of Point Cloud Data for Pile Hole Morphology

  • 摘要: 针对桩孔形态点云数据可读性低、可视化效果差导致的桩孔质量评价困难问题,采用半径滤波(radius outlier removal, ROR)、基于非线性最小二乘法(levenberg-marquardt, LM)的剖面圆拟合、径向渲染及曲面重建技术对点云数据可视化进行增强。通过邻域划分和阈值检测降低数据噪声,基于层间离散化及二维投影平面剖面圆拟合求解桩孔径向变化信息,利用径向渲染生成直观可读的桩孔形态图像,结合曲面重建方法提升成像平滑度,获取桩孔形态三维模型。试验结果表明,该技术可增强桩孔形态视觉感知,显著标识孔心偏差大小和方向,精确定位桩孔缩径、扩张。

     

    Abstract: To address the difficulties in evaluating pile hole quality due to the low readability and poor visualization of pile hole morphological point cloud data, this study optimizes point cloud data visualization using radius outlier removal (ROR) filtering, Levenberg–Marquardt (LM) profile circle fitting, radial rendering, and surface reconstruction techniques. The method reduces data noise through neighborhood division and threshold detection, and determines pile hole radial change information based on interlayer discretization and two-dimensional projection plane profile circle fitting. Radial rendering is used to generate intuitive and readable images of pile hole morphology, and surface reconstruction methods are employed to enhance image smoothness and obtain three-dimensional models of pile hole morphology. Experimental results demonstrate that this technique enhances the visual perception of pile hole morphology, clearly identifies the magnitude and direction of hole center deviation, and accurately locates pile hole diameter reduction and expansion.

     

/

返回文章
返回