高级检索

傅里叶-小波正则反卷积医学超声成像方法

Fourier-wavelet regularized deconvolution in medical ultrasound imaging

  • 摘要: 研究了利用傅里叶-小波正则反卷积改善医学超声图像质量的方法。将高阶谱方法和傅里叶-小波正则反卷积算法创新地用于医用超声诊断仪的轴向和纵向的二维射频信号,首先估计出中心频率为3.5MHz的A扫描系统函数,然后应用对射频A扫信号进行反卷积成像。实验结果表明,该方法显著改善了因系统函数与被测信号卷积所产生的分辨率退化现象,极大地提高了医学超声图像的分辨率和信噪比。

     

    Abstract: In this paper,medical ultrasound images are improved by applying Fourier-Wavelet Regularized Deconvolu-tion.The high-order spectra algorithms and the Fourier-Wavelet Regularized Deconvolution algorithm are creatively applied to axial and lateral two-dimension radio frequency signals of the medical ultrasonic diagnose instrument.Firstly,the A-scan system function with a central frequency of 3.5 MHz is approached.Then the RF A-scan signal is de-convoluted.The results of the experiments prove that the technique can significantly improve the degenerated resolu-tion caused by the system function convoluting with the measured signal,and effectively improve the resolution and signal-noise-ratio of the medical ultrasound image.

     

/

返回文章
返回