高级检索

HHT与神经网络在舰船目标特征提取中的应用

The application of HHT and neural network in feature extraction of ship targets

  • 摘要: 目标识别一直是水声领域的关键技术之一.将高阶累积量用于希尔伯特变换特征提取中,通过对舰船目标辐射噪声信号进行采集,得到舰船目标噪声信号,进而提取目标辐射信号各阶模态的相邻平均瞬时频率比、相对标准差、中心频率、平均强度、高阶矩和高阶累积量等作为特征,最终利用BP神经网络来实现对两类舰船目标的分类识别.通过对实际舰船目标噪声进行识别,验证了该舰船目标识别系统具有较好的识别效果.

     

    Abstract: Target recognition is one of the key techniques in underwater acoustic area.This article uses high-order cu-mulant and Hilbert transform for feature extraction,firstly gets the ship radiated noise from target ships,and then ex-tracts the ratio of average instantaneous frequency between neighboring IMFs,relative standard deviation,center fre-quency,average intensity,high-order moment and high-order cumulant of different orders of IMFn(n=1-8),finally re-cognizes and classifies two types of ship targets through BP neural network.Good recognition effect of this method has been verified through the classification tests for the actual ship radiated noise.

     

/

返回文章
返回