基于近似熵的语音端点检测
Noisy speech endpoint detection based on approximate entropy
-
摘要: 提高语音信号端点检测的正确率一直是语音识别领域的一个重要课题,特别是提高在各种实际噪声环境下语音端点检测的正确率更为重要,而传统的基于能量与过零率的方法在噪声环境下不能有效地工作。近似熵是一种新的度量序列复杂性的方法,它具有较强的抗干扰能力。从信号复杂性的角度提出了一种基于近似熵的带噪语音端点检测方法,证明了通过给定一个合理的阈值可以有效地进行语音端点检测。在不同类型噪声及不同信噪比环境下进行实验,结果表明,对语音信号起点和终点的检测性能均要比传统基于能量的方法要好,即使是在较低的信噪比下,该方法仍能够比较准确地检测出语音的起止端点。Abstract: To improve performance of endpoint detection in noisy environment is an important issue in automatic speech recognition(ASR),especially in actual noisy environments.The performance of conventional endpoint detection methods based on short-time energy and zero-crossing rate is unsatisfactory in environments of low SNR.Approximate entropy is a new statistical method of complexity measurement in measuring time series complexity.It is quite stable with changing data length and has strong anti-interference ability.In this paper,a method of noisy speech endpoint detection based on approximate entropy(ApEn)is proposed.Simulation results indicate that the method has good performance even in low SNR circumstances.