高级检索

结合重叠子帧的KLT和MMCE的说话人辨认

Combination of KLT and overlap sub-frame in MMCE speaker identification

  • 摘要: KLT已经成功用于与文本无关的说话人辨认的特征提取,但是对于特征矢量分解,它需要巨大的计算负担。为了减轻计算负担,把KLT和重叠子帧合并起来用于噪声环境下的说话人辨认。基于重叠子帧的分离方法,文中提出了一种有效技术去建立特征矢量矩阵以便取得KLT的优点。在传统的MCE方法中,对于有K个说话人的系统而言,每一类别的分类错误都需要计算K-1类的判别函数,随着K的增加,使得计算量大量增加,文中提出改进的MCE模型以减少计算量,提高运算速度。实验结果显示:所提出的方法不仅减少了计算量,而且提高了系统辨认率。

     

    Abstract: KLT in feature extraction of text independent speaker identification needs huge computation load.To solve this problem,KLT is combined with overlap sub-frame for speaker identification in an additive noise environment.Based on a separation of overlap sub-frames,an effective technique is proposed to take the advantage of KLT.Experiments show that computation is reduced considerably.In the traditional MCE method,K-1decision functions must be obtained for each classification error.With K increased,the computation load becomes prohibitive.A modified MCE model is described to alleviate the problem.Comparisons with GMM have been done,showing considerable improvement of the identification rate with KLT/MMCE.Especially when the hybrid number is up to 128,the system identification rate reaches 98.5%.This indicates effectiveness of the proposed method.

     

/

返回文章
返回