Abstract:
The acoustic metasurface has unique properties which are not possessed by natural materials, it provides diversity for the design of acoustic devices. In this paper, it is theoretically demonstrated that the generalized Snell's law can be used for designing acoustic gradient metasurface to achieve acoustic wavefront regulation and control. The metasurfaces are constructed by eight coiling up space units of a solid structure having different structural parameters. The eight units can provide discrete phase shifts covering. span and have the extraordinary acoustic transmission coefficient around the frequency of 3 500 Hz. Arbitrary regulation and control of acoustic wavefront can be achieved by appropriately designing the phase gradient profiles in the transverse direction of the metasurface. The theoretical and numerical results show that some excellent wavefront regulations, such as anomalous refraction, non-diffracting Bessel beam and sub-wavelength flat focusing, can be achieved. The ultrathin metasurfaces with high transmission coefficient has potential application in acoustic devices.